Ad
related to: heat and thermodynamics zemansky pdf
Search results
Results From The WOW.Com Content Network
Thermodynamics and statistical mechanics. {}: CS1 maint: multiple names: authors list Translated by J. Kestin (1956) New York: Academic Press. Ehrenfest, Paul and Tatiana (1912). The conceptual foundations of the statistical approach in mechanics .
Mark Waldo Zemansky (May 5, 1900 – December 29, 1981 [2] [4]) was an American physicist. He was a professor of physics at the City College of New York for decades and is best known for co-authoring University Physics , an introductory physics textbook, with Francis Sears .
The first part of the book starts by presenting the problem thermodynamics is trying to solve, and provides the postulates on which thermodynamics is founded. It then develops upon this foundation to discuss reversible processes, heat engines, thermodynamics potentials, Maxwell's relations, stability of thermodynamics systems, and first-order phase transitions.
University Physics, informally known as the Sears & Zemansky, is the name of a two-volume physics textbook written by Hugh Young and Roger Freedman. The first edition of University Physics was published by Mark Zemansky and Francis Sears in 1949. [2] [3] Hugh Young became a coauthor with Sears
Scots-Irish physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854 [2] which stated, "Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency."
The history of thermodynamics is fundamentally interwoven with the history of physics and the history of chemistry, and ultimately dates back to theories of heat in antiquity. The laws of thermodynamics are the result of progress made in this field over the nineteenth and early twentieth centuries.
In thermodynamics, heat is energy in transfer to or from a thermodynamic system by mechanisms other than thermodynamic work or transfer of matter, such as conduction, radiation, and friction. [ 3 ] [ 4 ] Heat refers to a quantity in transfer between systems, not to a property of any one system, or "contained" within it; on the other hand ...
The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.