Ads
related to: dual curve in geometry examples pdf filesstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Curves, dual to each other; see below for properties. In projective geometry, a dual curve of a given plane curve C is a curve in the dual projective plane consisting of the set of lines tangent to C. There is a map from a curve to its dual, sending each point to the point
These sets can be used to define a plane dual structure. Interchange the role of "points" and "lines" in C = (P, L, I) to obtain the dual structure. C ∗ = (L, P, I ∗), where I ∗ is the converse relation of I. C ∗ is also a projective plane, called the dual plane of C. If C and C ∗ are isomorphic, then C is called self-dual.
In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.
References to literature on the curve; The equations of some of the cubics listed in the Catalogue are so incredibly complicated that the maintainer of the website has refrained from putting up the equation in the webpage of the cubic; instead, a link to a file giving the equation in an unformatted text form is provided.
A curve in this context is defined by a non-degenerate algebraic equation in the complex projective plane. Lines in this plane correspond to points in the dual projective plane and the lines tangent to a given algebraic curve C correspond to points in an algebraic curve C * called the dual curve.
The closure of the locus of curves with a given dual graph in ¯, is isomorphic to the stack quotient of a product ¯, of compactified moduli spaces of curves by a finite group. In the product the factor corresponding to a vertex v has genus g v taken from the labelling and number of markings n v {\displaystyle n_{v}} equal to the number of ...
Upload file; Search. Search. ... Download as PDF; Printable version ... move to sidebar hide. This is a gallery of curves used in mathematics, by Wikipedia ...
The cube and regular octahedron are dual graphs of each other. According to Steinitz's theorem, every polyhedral graph (the graph formed by the vertices and edges of a three-dimensional convex polyhedron) must be planar and 3-vertex-connected, and every 3-vertex-connected planar graph comes from a convex polyhedron in this way.