Search results
Results From The WOW.Com Content Network
The Boltzmann equation can be used to determine how physical quantities change, such as heat energy and momentum, when a fluid is in transport. One may also derive other properties characteristic to fluids such as viscosity, thermal conductivity, and electrical conductivity (by treating the charge carriers in a material as a gas). [2]
There are some notable similarities in equations for momentum, energy, and mass transfer [7] which can all be transported by diffusion, as illustrated by the following examples: Mass: the spreading and dissipation of odors in air is an example of mass diffusion. Energy: the conduction of heat in a solid material is an example of heat diffusion.
The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Maxwell [1] for dilute gases and Josef Stefan [2] for liquids. The Maxwell–Stefan equation is [3 ...
In the life sciences, mass flow, also known as mass transfer and bulk flow, is the movement of fluids down a pressure or temperature gradient. [1] As such, mass flow is a subject of study in both fluid dynamics and biology. Examples of mass flow include blood circulation and transport of water in vascular plant tissues. Mass flow is not to be ...
In applications to gas dynamics, the diffusion flux and the bulk flow should be joined in one system of transport equations. The bulk flow describes the mass transfer. Its velocity V is the mass average velocity. It is defined through the momentum density and the mass concentrations:
The advection equation is a first-order hyperbolic partial differential equation that governs the motion of a conserved scalar field as it is advected by a known velocity vector field. [1] It is derived using the scalar field's conservation law , together with Gauss's theorem , and taking the infinitesimal limit.
Gas networks simulation or gas pipeline simulation is a process of defining the mathematical model of gas transmission and gas distribution systems, which are usually composed of highly integrated pipe networks operating over a wide range of pressures. Simulation allows to predict the behaviour of gas network systems under different conditions ...
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...