When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    The chain rule applies in some of the cases, but unfortunately does not apply in matrix-by-scalar derivatives or scalar-by-matrix derivatives (in the latter case, mostly involving the trace operator applied to matrices). In the latter case, the product rule can't quite be applied directly, either, but the equivalent can be done with a bit more ...

  3. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In this situation, the chain rule represents the fact that the derivative of f ∘ g is the composite of the derivative of f and the derivative of g. This theorem is an immediate consequence of the higher dimensional chain rule given above, and it has exactly the same formula. The chain rule is also valid for Fréchet derivatives in Banach spaces.

  4. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of ...

  5. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  6. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    Automatic differentiation is a subtle and central tool to automatize the simultaneous computation of the numerical values of arbitrarily complex functions and their derivatives with no need for the symbolic representation of the derivative, only the function rule or an algorithm thereof is required.

  7. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may often be evaluated by changing variables; this is enabled by the substitution rule and is analogous to the use of the chain rule above. Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1]

  8. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    Of course, the Jacobian matrix of the composition g ° f is a product of corresponding Jacobian matrices: J x (g ° f) =J ƒ(x) (g)J x (ƒ). This is a higher-dimensional statement of the chain rule. For real valued functions from R n to R (scalar fields), the Fréchet derivative corresponds to a vector field called the total derivative.

  9. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...