When.com Web Search

  1. Ad

    related to: robertson seymour theorem equation example questions

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    Some examples of finite obstruction sets were already known for specific classes of graphs before the RobertsonSeymour theorem was proved. For example, the obstruction for the set of all forests is the loop graph (or, if one restricts to simple graphs, the cycle with three vertices). This means that a graph is a forest if and only if none of ...

  3. Non-constructive algorithm existence proofs - Wikipedia

    en.wikipedia.org/wiki/Non-constructive_algorithm...

    The non-constructive part here is the RobertsonSeymour theorem. Although it guarantees that there is a finite number of minor-minimal elements it does not tell us what these elements are. Therefore, we cannot really execute the "algorithm" mentioned above. But, we do know that an algorithm exists and that its runtime is polynomial.

  4. Kruskal's tree theorem - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_tree_theorem

    This case of the theorem is still provable by Π 1 1-CA 0, but by adding a "gap condition" [3] to the definition of the order on trees above, he found a natural variation of the theorem unprovable in this system. [4] [5] Much later, the RobertsonSeymour theorem would give another theorem unprovable by Π 1 1-CA 0.

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Robbins theorem (graph theory) RobertsonSeymour theorem (graph theory) Robin's theorem (number theory) Robinson's joint consistency theorem (mathematical logic) Rokhlin's theorem (geometric topology) Rolle's theorem ; Rosser's theorem (number theory) Rouché's theorem (complex analysis) Rouché–Capelli theorem (Linear algebra)

  6. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor. [15]

  7. Logic of graphs - Wikipedia

    en.wikipedia.org/wiki/Logic_of_graphs

    The proof involves using Courcelle's theorem to build an automaton that can test the property, and then examining the automaton to determine whether there is any graph it can accept. As a partial converse, [34] Seese (1991) proved that, whenever a family of graphs has a decidable MSO 2 satisfiability problem, the family must have bounded treewidth.

  8. Linkless embedding - Wikipedia

    en.wikipedia.org/wiki/Linkless_embedding

    Therefore, by the RobertsonSeymour theorem, the linklessly embeddable graphs have a forbidden graph characterization as the graphs that do not contain any of a finite set of minors. [ 3 ] The set of forbidden minors for the linklessly embeddable graphs was identified by Sachs (1983) : the seven graphs of the Petersen family are all minor ...

  9. List of conjectures - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures

    exponential diophantine equations: ⇐Pillai's conjecture⇐abc conjecture Mihăilescu's theorem 2002: Maria Chudnovsky, Neil Robertson, Paul D. Seymour, and Robin Thomas: strong perfect graph conjecture: perfect graphs: Chudnovsky–RobertsonSeymour–Thomas theorem 2002: Grigori Perelman: Poincaré conjecture, 1904: 3-manifolds: 2003 ...