When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    Some examples of finite obstruction sets were already known for specific classes of graphs before the RobertsonSeymour theorem was proved. For example, the obstruction for the set of all forests is the loop graph (or, if one restricts to simple graphs, the cycle with three vertices). This means that a graph is a forest if and only if none of ...

  3. Non-constructive algorithm existence proofs - Wikipedia

    en.wikipedia.org/wiki/Non-constructive_algorithm...

    The non-constructive part here is the RobertsonSeymour theorem. Although it guarantees that there is a finite number of minor-minimal elements it does not tell us what these elements are. Therefore, we cannot really execute the "algorithm" mentioned above. But, we do know that an algorithm exists and that its runtime is polynomial.

  4. Hadwiger conjecture (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Hadwiger_conjecture_(graph...

    One example is the snark theorem, that every cubic graph requiring four colors in any edge coloring has the Petersen graph as a minor, conjectured by W. T. Tutte and announced to be proved in 2001 by Robertson, Sanders, Seymour, and Thomas. [13]

  5. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor. [15]

  6. Friedman's SSCG function - Wikipedia

    en.wikipedia.org/wiki/Friedman's_SSCG_function

    The RobertsonSeymour theorem proves that subcubic graphs (simple or not) are well-founded by homeomorphic embeddability, implying such a sequence cannot be infinite. Then, by applying KÅ‘nig's lemma on the tree of such sequences under extension, for each value of k there is a sequence with maximal length.

  7. Logic of graphs - Wikipedia

    en.wikipedia.org/wiki/Logic_of_graphs

    The proof involves using Courcelle's theorem to build an automaton that can test the property, and then examining the automaton to determine whether there is any graph it can accept. As a partial converse, [34] Seese (1991) proved that, whenever a family of graphs has a decidable MSO 2 satisfiability problem, the family must have bounded treewidth.

  8. Linkless embedding - Wikipedia

    en.wikipedia.org/wiki/Linkless_embedding

    Therefore, by the RobertsonSeymour theorem, the linklessly embeddable graphs have a forbidden graph characterization as the graphs that do not contain any of a finite set of minors. [ 3 ] The set of forbidden minors for the linklessly embeddable graphs was identified by Sachs (1983) : the seven graphs of the Petersen family are all minor ...

  9. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Robbins theorem (graph theory) RobertsonSeymour theorem (graph theory) Robin's theorem (number theory) Robinson's joint consistency theorem (mathematical logic) Rokhlin's theorem (geometric topology) Rolle's theorem ; Rosser's theorem (number theory) Rouché's theorem (complex analysis) Rouché–Capelli theorem (Linear algebra)