Search results
Results From The WOW.Com Content Network
function reverse_in_place(a[0..n-1]) for i from 0 to floor((n-2)/2) tmp := a[i] a[i] := a[n − 1 − i] a[n − 1 − i] := tmp And for further clarification check leet code problem number 88 As another example, many sorting algorithms rearrange arrays into sorted order in-place, including: bubble sort , comb sort , selection sort , insertion ...
The reversal algorithm is the simplest to explain, using rotations. A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block ...
The Fisher–Yates shuffle, as implemented by Durstenfeld, is an in-place shuffle. That is, given a preinitialized array, it shuffles the elements of the array in place, rather than producing a shuffled copy of the array. This can be an advantage if the array to be shuffled is large.
Because the bit-reversal permutation is an involution, it may be performed easily in place (without copying the data into another array) by swapping pairs of elements. In the random-access machine commonly used in algorithm analysis, a simple algorithm that scans the indexes in input order and swaps whenever the scan encounters an index whose ...
Used in Python 2.3 and up, and Java SE 7. Insertion sorts Insertion sort: determine where the current item belongs in the list of sorted ones, and insert it there; Library sort; Patience sorting; Shell sort: an attempt to improve insertion sort; Tree sort (binary tree sort): build binary tree, then traverse it to create sorted list
For a square N×N matrix A n,m = A(n,m), in-place transposition is easy because all of the cycles have length 1 (the diagonals A n,n) or length 2 (the upper triangle is swapped with the lower triangle). Pseudocode to accomplish this (assuming zero-based array indices) is: for n = 0 to N - 1 for m = n + 1 to N swap A(n,m) with A(m,n)
In computer science, selection sort is an in-place comparison sorting algorithm.It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort.
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.