When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...

  3. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    This equation gives the entropy in the units of "bits" (per symbol) because it uses a logarithm of base 2, and this base-2 measure of entropy has sometimes been called the shannon in his honor. Entropy is also commonly computed using the natural logarithm (base e, where e is Euler's number), which produces a measurement of entropy in nats per ...

  4. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    The Shannon entropy (in nats) is: = = ⁡ = ⁡ and if entropy is measured in units of per nat, then the entropy is given by: = ⁡ which is the Boltzmann entropy formula, where is the Boltzmann constant, which may be interpreted as the thermodynamic entropy per nat.

  5. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  6. Limiting density of discrete points - Wikipedia

    en.wikipedia.org/wiki/Limiting_density_of...

    Shannon originally wrote down the following formula for the entropy of a continuous distribution, known as differential entropy: = ⁡ ().Unlike Shannon's formula for the discrete entropy, however, this is not the result of any derivation (Shannon simply replaced the summation symbol in the discrete version with an integral), and it lacks many of the properties that make the discrete entropy a ...

  7. Shannon (unit) - Wikipedia

    en.wikipedia.org/wiki/Shannon_(unit)

    The shannon also serves as a unit of the information entropy of an event, which is defined as the expected value of the information content of the event (i.e., the probability-weighted average of the information content of all potential events). Given a number of possible outcomes, unlike information content, the entropy has an upper bound ...

  8. nat (unit) - Wikipedia

    en.wikipedia.org/wiki/Nat_(unit)

    Shannon entropy (information entropy), being the expected value of the information of an event, is inherently a quantity of the same type and with a unit of information. The International System of Units, by assigning the same unit (joule per kelvin) both to heat capacity and to thermodynamic entropy implicitly treats information entropy as a quantity of dimension one, with 1 nat = 1.

  9. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    The joint information is equal to the mutual information plus the sum of all the marginal information (negative of the marginal entropies) for each particle coordinate. Boltzmann's assumption amounts to ignoring the mutual information in the calculation of entropy, which yields the thermodynamic entropy (divided by the Boltzmann constant).