Search results
Results From The WOW.Com Content Network
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Continuum (topology) Extended real number line; Long line (topology) Sierpinski space; Cantor set, Cantor space, Cantor cube; Space-filling curve; Topologist's sine curve; Uniform norm; Weak topology; Strong topology; Hilbert cube; Lower limit topology; Sorgenfrey plane; Real tree; Compact-open topology; Zariski topology; Kuratowski closure ...
A torus, one of the most frequently studied objects in algebraic topology. Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.
The term topology was introduced by Johann Benedict Listing in the 19th century, although it was not until the first decades of the 20th century that the idea of a topological space was developed. This is a list of topology topics. See also: Topology glossary; List of topologies; List of general topology topics; List of geometric topology topics
4 Notes. 5 Further reading. 6 External ... Download as PDF; Printable version ... Arithmetic topology is an area of mathematics that is a combination of algebraic ...
The Golomb topology, [2] or relatively prime integer topology, [6] on the set > of positive integers is obtained by taking as a base the collection of all + with , > and and relatively prime. [2] Equivalently, [ 7 ] the subcollection of such sets with the extra condition b < a {\displaystyle b<a} also forms a base for the topology. [ 6 ]
In mathematics, geometry and topology is an umbrella term for the historically distinct disciplines of geometry and topology, as general frameworks allow both disciplines to be manipulated uniformly, most visibly in local to global theorems in Riemannian geometry, and results like the Gauss–Bonnet theorem and Chern–Weil theory.
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology , geometric topology , and algebraic topology .