Search results
Results From The WOW.Com Content Network
describes a right circular conoid with the unit circle of the x-y-plane as directrix and a directrix plane, which is parallel to the y--z-plane. Its axis is the line (,,) . Special features: The intersection with a horizontal plane is an ellipse.
More generally, for any collection of points P i, weights w i, and constant C, one can define a circle as the locus of points X such that (,) =.. The director circle of an ellipse is a special case of this more general construction with two points P 1 and P 2 at the foci of the ellipse, weights w 1 = w 2 = 1, and C equal to the square of the major axis of the ellipse.
The area formula is intuitive: start with a circle of radius (so its area is ) and stretch it by a factor / to make an ellipse. This scales the area by the same factor: π b 2 ( a / b ) = π a b . {\displaystyle \pi b^{2}(a/b)=\pi ab.} [ 18 ] However, using the same approach for the circumference would be fallacious – compare the integrals
Following Archimedes' argument in The Measurement of a Circle (c. 260 BCE), compare the area enclosed by a circle to a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius. If the area of the circle is not equal to that of the triangle, then it must be either greater or less.
A circle of finite radius has an infinitely distant directrix, while a pair of lines of finite separation have an infinitely distant focus. In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.
In geometry, a surface S in 3-dimensional Euclidean space is ruled (also called a scroll) if through every point of S, there is a straight line that lies on S. Examples include the plane , the lateral surface of a cylinder or cone , a conical surface with elliptical directrix , the right conoid , the helicoid , and the tangent developable of a ...
The directrix has equation = . With = (,), the ... The area of the grey parallelogram ... This circle is called the orthoptic of the given hyperbola.
A cone can be generated by moving a line (the generatrix) fixed at the future apex of the cone along a closed curve (the directrix); if that directrix is a circle perpendicular to the line connecting its center to the apex, the motion is rotation around a fixed axis and the resulting shape is a circular cone. [3]