When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scale space implementation - Wikipedia

    en.wikipedia.org/wiki/Scale_space_implementation

    The symmetric 3-kernel [t/2, 1-t, t/2], for t ≤ 0.5 smooths to a scale of t using a pair of real zeros at Z < 0, and approaches the discrete Gaussian in the limit of small t. In fact, with infinitesimal t , either this two-zero filter or the two-pole filter with poles at Z = t /2 and Z = 2/ t can be used as the infinitesimal generator for the ...

  3. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    The density estimates are kernel density estimates using a Gaussian kernel. That is, a Gaussian density function is placed at each data point, and the sum of the density functions is computed over the range of the data. From the density of "glu" conditional on diabetes, we can obtain the probability of diabetes conditional on "glu" via Bayes ...

  4. Scale space - Wikipedia

    en.wikipedia.org/wiki/Scale_space

    For temporal smoothing in real-time situations, one can instead use the temporal kernel referred to as the time-causal limit kernel, [71] which possesses similar properties in a time-causal situation (non-creation of new structures towards increasing scale and temporal scale covariance) as the Gaussian kernel obeys in the non-causal case. The ...

  5. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory. Gaussian beams are used in optical systems, microwave systems and lasers. In scale space representation, Gaussian functions are used as smoothing kernels for generating multi-scale representations in computer vision and image processing.

  6. Gaussian kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).

  7. Gaussian filter - Wikipedia

    en.wikipedia.org/wiki/Gaussian_filter

    The Gaussian kernel is continuous. Most commonly, the discrete equivalent is the sampled Gaussian kernel that is produced by sampling points from the continuous Gaussian. An alternate method is to use the discrete Gaussian kernel [10] which has superior characteristics for some purposes.

  8. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  9. Low-rank matrix approximations - Wikipedia

    en.wikipedia.org/wiki/Low-rank_matrix_approximations

    Low-rank matrix approximations are essential tools in the application of kernel methods to large-scale learning problems. [1]Kernel methods (for instance, support vector machines or Gaussian processes [2]) project data points into a high-dimensional or infinite-dimensional feature space and find the optimal splitting hyperplane.