When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  3. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    The density estimates are kernel density estimates using a Gaussian kernel. That is, a Gaussian density function is placed at each data point, and the sum of the density functions is computed over the range of the data. From the density of "glu" conditional on diabetes, we can obtain the probability of diabetes conditional on "glu" via Bayes ...

  4. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    For non-Gaussian likelihoods, there is no closed form solution for the posterior distribution or for the marginal likelihood. However, the marginal likelihood can be approximated under a Laplace, variational Bayes or expectation propagation (EP) approximation frameworks for multiple output classification and used to find estimates for the ...

  5. Low-rank matrix approximations - Wikipedia

    en.wikipedia.org/wiki/Low-rank_matrix_approximations

    Kernel methods become unfeasible when the number of points is so large such that the kernel matrix ^ cannot be stored in memory.. If is the number of training examples, the storage and computational cost required to find the solution of the problem using general kernel method is () and () respectively.

  6. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    The discrete Gaussian kernel (solid), compared with the sampled Gaussian kernel (dashed) for scales =,,, One may ask for a discrete analog to the Gaussian; this is necessary in discrete applications, particularly digital signal processing.

  7. Scale space - Wikipedia

    en.wikipedia.org/wiki/Scale_space

    For temporal smoothing in real-time situations, one can instead use the temporal kernel referred to as the time-causal limit kernel, [71] which possesses similar properties in a time-causal situation (non-creation of new structures towards increasing scale and temporal scale covariance) as the Gaussian kernel obeys in the non-causal case. The ...

  8. Difference of Gaussians - Wikipedia

    en.wikipedia.org/wiki/Difference_of_Gaussians

    When utilized for image enhancement, the difference of Gaussians algorithm is typically applied when the size ratio of kernel (2) to kernel (1) is 4:1 or 5:1. In the example images, the sizes of the Gaussian kernels employed to smooth the sample image were 10 pixels and 5 pixels.

  9. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    [7] [23] Given any set of N points in the desired domain of your functions, take a multivariate Gaussian whose covariance matrix parameter is the Gram matrix of your N points with some desired kernel, and sample from that Gaussian. For solution of the multi-output prediction problem, Gaussian process regression for vector-valued function was ...