Ad
related to: triangular number
Search results
Results From The WOW.Com Content Network
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number , other examples being square numbers and cube numbers . The n th triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural ...
Square triangular number 36 depicted as a triangular number and as a square number. In mathematics, a square triangular number (or triangular square number) is a number which is both a triangular number and a square number. There are infinitely many square triangular numbers; the first few are:
Each centered triangular number has a remainder of 1 when divided by 3, and the quotient (if positive) is the previous regular triangular number. Each centered triangular number from 10 onwards is the sum of three consecutive regular triangular numbers. For n > 2, the sum of the first n centered triangular numbers is the magic constant for an n ...
Polygonal numbers: These are numbers that can be represented as dots that are arranged in the shape of a regular polygon, including Triangular numbers, Square numbers, Pentagonal numbers, Hexagonal numbers, Heptagonal numbers, Octagonal numbers, Nonagonal numbers, Decagonal numbers, Hendecagonal numbers, and Dodecagonal numbers.
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. From Gulley (2010).The n th coloured region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the n th region is n times n × n.
The triangular number sequence is the representation of the numbers in the form of equilateral triangle arranged in a series or sequence. These numbers are in a sequence of 1, 3, 6, 10, 15, 21, 28, 36, 45, and so on.
In mathematics, the doubly triangular numbers are the numbers that appear within the sequence of triangular numbers, in positions that are also triangular numbers. That is, if T n = n ( n + 1 ) / 2 {\displaystyle T_{n}=n(n+1)/2} denotes the n {\displaystyle n} th triangular number, then the doubly triangular numbers are the numbers of the form ...
Aside from being the smallest square triangular number other than 1, it is also the only triangular number (other than 1) whose square root is also a triangular number. 36 is also the eighth refactorable number, as it has exactly nine positive divisors, and 9 is one of them; [3] in fact, it is the smallest positive integer with at least nine ...