Search results
Results From The WOW.Com Content Network
The arithmetic–geometric mean of two numbers, a 0 and b 0, is found by calculating the limit of the sequences + = +, + =, which both converge to the same limit. If = and = then the limit is () where () is the complete elliptic integral of the first kind
Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.
The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz ...
Though the BBP formula can directly calculate the value of any given digit of π with less computational effort than formulas that must calculate all intervening digits, BBP remains linearithmic (()), whereby successively larger values of n require increasingly more time to calculate; that is, the "further out" a digit is, the longer it ...
For any real x, Newton's method can be used to compute erfi −1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges: = = + +, where c k is defined as above. Asymptotic expansion
is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler . It is a special case of Euler's formula e i x = cos x + i sin x {\displaystyle e^{ix}=\cos x+i\sin x} when evaluated for x = π {\displaystyle x=\pi } .
In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [ 3 ] The special case of the arctangent of 1 {\displaystyle 1} is traditionally called the Leibniz formula for π , or recently sometimes the Mādhava–Leibniz formula :
This category presents articles pertaining to the calculation of Pi to arbitrary precision. Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total.