Search results
Results From The WOW.Com Content Network
Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.
The prediction interval is conventionally written as: [, +]. For example, to calculate the 95% prediction interval for a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 1, then z is approximately 2. Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is ...
The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz ...
A weaker three-sigma rule can be derived from Chebyshev's inequality, stating that even for non-normally distributed variables, at least 88.8% of cases should fall within properly calculated three-sigma intervals. For unimodal distributions, the probability of being within the interval is at least 95% by the Vysochanskij–Petunin inequality ...
Though the BBP formula can directly calculate the value of any given digit of π with less computational effort than formulas that must calculate all intervening digits, BBP remains linearithmic (()), whereby successively larger values of n require increasingly more time to calculate; that is, the "further out" a digit is, the longer it ...
For any real x, Newton's method can be used to compute erfi −1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges: = = + +, where c k is defined as above. Asymptotic expansion
In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [ 3 ] The special case of the arctangent of 1 {\displaystyle 1} is traditionally called the Leibniz formula for π , or recently sometimes the Mādhava–Leibniz formula :
The specific value = can be used to calculate the circle constant π, and the arctangent series for 1 is conventionally called Leibniz's series. In recognition of Madhava's priority , in recent literature these series are sometimes called the Madhava–Newton series , [ 4 ] Madhava–Gregory series , [ 5 ] or Madhava–Leibniz series [ 6 ...