When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    On the other hand, the internally studentized residuals are in the range , where ν = n − m is the number of residual degrees of freedom. If t i represents the internally studentized residual, and again assuming that the errors are independent identically distributed Gaussian variables, then: [2]

  3. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    In regression analysis, the distinction between errors and residuals is subtle and important, and leads to the concept of studentized residuals. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the ...

  4. DFFITS - Wikipedia

    en.wikipedia.org/wiki/DFFITS

    DFFITS is the Studentized DFFIT, ... DFFITS also equals the products of the externally Studentized residual (() ) and the leverage ...

  5. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Raw residuals are one option; another is studentized residuals (in linear regression). Although there are arguments in favor of using studentized residuals; in practice, it often makes little difference, and it is easy to compare the results of both schemes.

  6. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    where is the index of independent variable, is the index of observation and [] are the residuals from regressing against the remaining independent variables. Note that the partial leverage is the leverage of the i t h {\displaystyle {i}^{th}} point in the partial regression plot for the j t h {\displaystyle {j}^{th}} variable.

  7. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950 [1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.

  8. t-statistic - Wikipedia

    en.wikipedia.org/wiki/T-statistic

    Studentized residual: In regression analysis, the standard errors of the estimators at different data points vary (compare the middle versus endpoints of a simple linear regression), and thus one must divide the different residuals by different estimates for the error, yielding what are called studentized residuals.

  9. Studentization - Wikipedia

    en.wikipedia.org/wiki/Studentization

    In statistics, Studentization, named after William Sealy Gosset, who wrote under the pseudonym Student, is the adjustment consisting of division of a first-degree statistic derived from a sample, by a sample-based estimate of a population standard deviation.