Ads
related to: vertical distillation tower
Search results
Results From The WOW.Com Content Network
Industrial distillation is typically performed in large, vertical cylindrical columns (as shown in images 1 and 2) known as "distillation towers" or "distillation columns" with diameters ranging from about 65 centimeters to 11 meters and heights ranging from about 6 meters to 60 meters or more.
Industrial distillation is typically performed in large, vertical cylindrical columns (as shown in Figure 2) known as "distillation towers" or "distillation columns" with diameters ranging from about 65 centimeters to 6 meters and heights ranging from about 6 meters to 60 meters or more.
Industrial distillation is typically performed in large, vertical cylindrical columns known as "distillation or fractionation towers" or "distillation columns" with diameters ranging from about 0.65 to 6 meters (2 to 20 ft) and heights ranging from about 6 to 60 meters (20 to 197 ft) or more.
Industrial distillation [41] [49] is typically performed in large, vertical cylindrical columns known as distillation towers or distillation columns with diameters ranging from about 0.65 to 16 metres (2 ft 2 in to 52 ft 6 in) and heights ranging from about 6 to 90 metres (20 to 295 ft) or more.
It is then heated in a fuel-fired furnace (fired heater) to a temperature of about 398 °C and routed into the bottom of the distillation unit. The cooling and condensing of the distillation tower overhead is provided partially by exchanging heat with the incoming crude oil and partially by either an air-cooled or water-cooled condenser.
A McCabe–Thiele diagram for the distillation of a binary (two-component) feed is constructed using the vapor-liquid equilibrium (VLE) data—which is how vapor is concentrated when in contact with its liquid form—for the component with the lower boiling point. Figure 1: Typical McCabe–Thiele diagram for distillation of a binary feed
The GPSA Engineering Data Book [3] recommends the following k values for vertical drums with horizontal mesh pads (at the denoted operating pressures): At a gauge pressure of 0 bar: 0.107 m/s; At a gauge pressure of 7 bar: 0.107 m/s; At a gauge pressure of 21 bar: 0.101 m/s; At a gauge pressure of 42 bar: 0.092 m/s
The liquid from the bottom of the tower, commonly called the bottoms, flows through the shell side. There is a retaining wall or overflow weir separating the tube bundle from the reboiler section where the residual reboiled liquid (called the bottoms product) is withdrawn, so that the tube bundle is kept covered with liquid and reduce the ...