When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    The first quartile (Q 1) is defined as the 25th percentile where lowest 25% data is below this point. It is also known as the lower quartile. The second quartile (Q 2) is the median of a data set; thus 50% of the data lies below this point. The third quartile (Q 3) is the 75th percentile where

  3. Quantile - Wikipedia

    en.wikipedia.org/wiki/Quantile

    This is the minimum value of the set, so the zeroth quartile in this example would be 3. 3 First quartile The rank of the first quartile is 10×(1/4) = 2.5, which rounds up to 3, meaning that 3 is the rank in the population (from least to greatest values) at which approximately 1/4 of the values are less than the value of the first quartile.

  4. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    The lower quartile, Q 1, is a number such that integral of the PDF from -∞ to Q 1 equals 0.25, while the upper quartile, Q 3, is such a number that the integral from -∞ to Q 3 equals 0.75; in terms of the CDF, the quartiles can be defined as follows: = (),

  5. Percentile - Wikipedia

    en.wikipedia.org/wiki/Percentile

    The 25th percentile is also known as the first quartile (Q 1), the 50th percentile as the median or second quartile (Q 2), and the 75th percentile as the third quartile (Q 3). For example, the 50th percentile (median) is the score below (or at or below, depending on the definition) which 50% of the scores in the distribution are found.

  6. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    The third quartile (3) is defined as the middle value halfway between the median and the largest value (maximum) of the dataset, such that 75 percent of the data lies below this quartile. Because the data must be ordered from smallest to largest in order to compute them, quartiles are a type of order statistic.

  7. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    Third quartile (Q 3 or 75th percentile): also known as the upper quartile q n (0.75), it is the median of the upper half of the dataset. [ 7 ] In addition to the minimum and maximum values used to construct a box-plot, another important element that can also be employed to obtain a box-plot is the interquartile range (IQR), as denoted below:

  8. Five-number summary - Wikipedia

    en.wikipedia.org/wiki/Five-number_summary

    If data are placed in order, then the lower quartile is central to the lower half of the data and the upper quartile is central to the upper half of the data. These quartiles are used to calculate the interquartile range, which helps to describe the spread of the data, and determine whether or not any data points are outliers.

  9. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    In terms of the distribution function F, the quantile function Q returns the value x such that ():= =, which can be written as inverse of the c.d.f. = (). The cumulative distribution function (shown as F(x)) gives the p values as a function of the q values.