Search results
Results From The WOW.Com Content Network
Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...
Resolving sets for graphs were introduced independently by Slater (1975) and Harary & Melter (1976), while the concept of a resolving set and that of metric dimension were defined much earlier in the more general context of metric spaces by Blumenthal in his monograph Theory and Applications of Distance Geometry. Graphs are special examples of ...
Graphs are commonly used to encode structural information in many fields, including computer vision and pattern recognition, and graph matching, i.e., identification of similarities between graphs, is an important tools in these areas. In these areas graph isomorphism problem is known as the exact graph matching. [47]
Often, the problem is to decompose a graph into subgraphs isomorphic to a fixed graph; for instance, decomposing a complete graph into Hamiltonian cycles. Other problems specify a family of graphs into which a given graph should be decomposed, for instance, a family of cycles, or decomposing a complete graph K n into n − 1 specified trees ...
The English term monograph is derived from modern Latin monographia, which has its root in Greek. [1] In the English word, mono-means ' single ' and -graph means ' something written '. [2] Unlike a textbook, which surveys the state of knowledge in a field, the main purpose of a monograph is to present primary research and original scholarship ...
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
The monochromatic triangle problem takes as input an n-node undirected graph G(V,E) with node set V and edge set E. The output is a Boolean value, true if the edge set E of G can be partitioned into two disjoint sets E1 and E2, such that both of the two subgraphs G1(V,E1) and G2(V,E2) are triangle-free graphs, and false otherwise.
An example of a maximum cut. In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.