When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Converse (logic) - Wikipedia

    en.wikipedia.org/wiki/Converse_(logic)

    The converse may or may not be true, and even if true, the proof may be difficult. For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context.

  3. Converse theorem - Wikipedia

    en.wikipedia.org/wiki/Converse_theorem

    In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well-behaved.

  4. Midpoint theorem (triangle) - Wikipedia

    en.wikipedia.org/wiki/Midpoint_theorem_(triangle)

    The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.

  5. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    The converse can also be proved without assuming the Pythagorean theorem. [ 27 ] [ 28 ] A corollary of the Pythagorean theorem's converse is a simple means of determining whether a triangle is right, obtuse, or acute, as follows.

  6. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...

  7. Morera's theorem - Wikipedia

    en.wikipedia.org/wiki/Morera's_theorem

    The converse of the theorem is not true in general. A holomorphic function need not possess an antiderivative on its domain, unless one imposes additional assumptions. The converse does hold e.g. if the domain is simply connected; this is Cauchy's integral theorem, stating that the line integral of a holomorphic function along a closed curve is ...

  8. Lagrange's theorem (group theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_theorem_(group...

    A "Converse of Lagrange's Theorem" (CLT) group is a finite group with the property that for every divisor of the order of the group, there is a subgroup of that order. It is known that a CLT group must be solvable and that every supersolvable group is a CLT group.

  9. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.