Search results
Results From The WOW.Com Content Network
When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically by drawing arrows for each force. The parallelogram of forces is a graphical manifestation of the addition of vectors.
Many of these problems are easily solvable provided that other geometric transformations are allowed; for example, neusis construction can be used to solve the former two problems. In terms of algebra , a length is constructible if and only if it represents a constructible number , and an angle is constructible if and only if its cosine is a ...
An example of this is a see saw. The children are applying the two forces at the ends, and the fulcrum in the middle gives the counter force to maintain the see saw in neutral position. Another example are the major vertical forces on an airplane in flight (see image at right).
The Varignon parallelogram is a rectangle if and only if the diagonals of the quadrilateral are perpendicular, that is, if the quadrilateral is an orthodiagonal quadrilateral. [6]: p. 14 [7]: p. 169 For a self-crossing quadrilateral, the Varignon parallelogram can degenerate to four collinear points, forming a line segment traversed twice.
The main algorithms of real algebraic geometry which solve a problem solved by CAD are related to the topology of semi-algebraic sets. One may cite counting the number of connected components , testing if two points are in the same components or computing a Whitney stratification of a real algebraic set .
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
Computational origami is a branch of computer science that is concerned with studying algorithms for solving paper-folding problems. In the early 1990s, origamists participated in a series of origami contests called the Bug Wars in which artists attempted to out-compete their peers by adding complexity to their origami bugs.