When.com Web Search

  1. Ads

    related to: q-series math examples problems 5th grade

Search results

  1. Results From The WOW.Com Content Network
  2. Basic hypergeometric series - Wikipedia

    en.wikipedia.org/wiki/Basic_hypergeometric_series

    In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series x n is called hypergeometric if the ratio of successive terms x n+1 /x n is a rational function of n.

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  4. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Quintic function: Fifth degree polynomial. Rational functions: A ratio of two polynomials. nth root. Square root: Yields a number whose square is the given one. Cube root: Yields a number whose cube is the given one.

  5. q-Pochhammer symbol - Wikipedia

    en.wikipedia.org/wiki/Q-Pochhammer_symbol

    The q-Pochhammer symbol is a major building block in the construction of q-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series.

  6. q-analog - Wikipedia

    en.wikipedia.org/wiki/Q-analog

    The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. [1] q-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit q → 1 is often formal, as q is often discrete-valued (for example, it may represent a ...

  7. q-theta function - Wikipedia

    en.wikipedia.org/wiki/Q-theta_function

    In mathematics, the q-theta function (or modified Jacobi theta function) is a type of q-series which is used to define elliptic hypergeometric series. [ 1 ] [ 2 ] It is given by θ ( z ; q ) := ∏ n = 0 ∞ ( 1 − q n z ) ( 1 − q n + 1 / z ) {\displaystyle \theta (z;q):=\prod _{n=0}^{\infty }(1-q^{n}z)\left(1-q^{n+1}/z\right)}