Ads
related to: find the sum 28 e i=1 (8i-13) 10 3 8 wide 3 ring binders
Search results
Results From The WOW.Com Content Network
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original series. As well as being used to define values for divergent series, Euler summation can be ...
The remainder term arises because the integral is usually not exactly equal to the sum. The formula may be derived by applying repeated integration by parts to successive intervals [r, r + 1] for r = m, m + 1, …, n − 1. The boundary terms in these integrations lead to the main terms of the formula, and the leftover integrals form the ...
Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.
If the sum is of the form = ()where ƒ is a smooth function, we could use the Euler–Maclaurin formula to convert the series into an integral, plus some corrections involving derivatives of S(x), then for large values of a you could use "stationary phase" method to calculate the integral and give an approximate evaluation of the sum.
In mathematics, a Kloosterman sum is a particular kind of exponential sum.They are named for the Dutch mathematician Hendrik Kloosterman, who introduced them in 1926 [1] when he adapted the Hardy–Littlewood circle method to tackle a problem involving positive definite diagonal quadratic forms in four variables, strengthening his 1924 dissertation research on five or more variables.
(in which, after five initial +1 terms, the terms alternate in pairs of +1 and −1 terms – the infinitude of both +1s and −1s allows any finite number of 1s or −1s to be prepended, by Hilbert's paradox of the Grand Hotel) is a permutation of Grandi's series in which each value in the rearranged series corresponds to a value that is at ...