When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...

  3. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.

  4. RATS (software) - Wikipedia

    en.wikipedia.org/wiki/RATS_(software)

    Linear regression, including stepwise. Regressions with heteroscedasticity and serial-correlation correction. Non-linear least squares. Two-stage least squares, three-stage least squares, and seemingly unrelated regressions. Non-linear systems estimation. Generalized Method of Moments. Maximum likelihood estimation.

  5. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  6. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In traditional regression analysis, the most popular form of feature selection is stepwise regression, which is a wrapper technique. It is a greedy algorithm that adds the best feature (or deletes the worst feature) at each round. The main control issue is deciding when to stop the algorithm.

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Bayesian linear regression applies the framework of Bayesian statistics to linear regression. (See also Bayesian multivariate linear regression .) In particular, the regression coefficients β are assumed to be random variables with a specified prior distribution .

  8. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  9. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    Under the linear regression model (which corresponds to choosing the kernel function as the linear kernel), this amounts to considering a spectral decomposition of the corresponding kernel matrix and then regressing the outcome vector on a selected subset of the eigenvectors of so obtained. It can be easily shown that this is the same as ...