Search results
Results From The WOW.Com Content Network
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
Estimation (or estimating) is the process of finding an estimate or approximation, which is a value that is usable for some purpose even if input data may be incomplete, uncertain, or unstable. The value is nonetheless usable because it is derived from the best information available. [ 1 ]
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data.
The convergence of a regular estimator's distribution is, in a sense, locally uniform. This is often considered desirable and leads to the convenient property that a small change in the parameter does not dramatically change the distribution of the estimator.
Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound. An efficient estimator is characterized by having the smallest possible variance, indicating that there is a small deviance between the estimated value and the "true" value in the L2 norm sense. [1]
Estimation statistics, or simply estimation, is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. [1]
In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter.
A consequence of the above discussion is the following counterintuitive result: When three or more unrelated parameters are measured, their total MSE can be reduced by using a combined estimator such as the James–Stein estimator; whereas when each parameter is estimated separately, the least squares (LS) estimator is admissible. A quirky ...