Search results
Results From The WOW.Com Content Network
Silicon tetrabromide, also known as tetrabromosilane, is the inorganic compound with the formula SiBr 4. [1] This colorless liquid has a suffocating odor due to its tendency to hydrolyze with release of hydrogen bromide. [2] The general properties of silicon tetrabromide closely resemble those of the more commonly used silicon tetrachloride. [2]
Lewis structure of a water molecule. Lewis structures – also called Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDs) – are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons that may exist in the molecule.
Silicon tetraiodide is the chemical compound with the formula Si I 4. It is a tetrahedral molecule with Si-I bond lengths of 2.432(5) Å. [1] SiI 4 is a precursor to silicon amides of the formula Si(NR 2) 4 (R = alkyl). [2] It has also been of interest in the manufacture and etching of silicon in microelectronics.
In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron.The bond angles are arccos(− 1 / 3 ) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues.
Silicon tetrafluoride or tetrafluorosilane is a chemical compound with the formula Si F 4. This colorless gas is notable for having a narrow liquid range: its boiling point is only 4 °C above its melting point.
Like other chlorosilanes or silanes, silicon tetrachloride reacts readily with water: . SiCl 4 + 2 H 2 O → SiO 2 + 4 HCl. The reaction can be noticed on exposure of the liquid to air, as SiCl 4 vapour produces fumes as it reacts with moisture to give a cloud-like aerosol of silica and hydrochloric acid. [6]
Lewis Structure of H 2 O indicating bond angle and bond length. Water (H 2 O) is a simple triatomic bent molecule with C 2v molecular symmetry and bond angle of 104.5° between the central oxygen atom and the hydrogen atoms.
The number of electron pairs in the valence shell of a central atom is determined after drawing the Lewis structure of the molecule, and expanding it to show all bonding groups and lone pairs of electrons. [1]: 410–417 In VSEPR theory, a double bond or triple bond is treated as a single bonding group. [1]