Search results
Results From The WOW.Com Content Network
The overlap matrix is a square matrix, used in quantum chemistry to describe the inter-relationship of a set of basis vectors of a quantum system, such as an atomic orbital basis set used in molecular electronic structure calculations. In particular, if the vectors are orthogonal to one another, the
Möbius (left) and Hückel (right) orbital arrays. The two orbital arrays in Figure 3 are just examples and do not correspond to real systems. In inspecting the Möbius one on the left, plus–minus overlaps are seen between orbital pairs 2-3, 3-4, 4-5, 5-6, and 6-1, corresponding to an odd number (5), as required by a Möbius system.
The atomic orbital combination must have the correct symmetry, which means that it must belong to the correct irreducible representation of the molecular symmetry group. Using symmetry adapted linear combinations, or SALCs, molecular orbitals of the correct symmetry can be formed. Atomic orbitals must also overlap within space.
In ethene, the two carbon atoms form a σ bond by overlapping one sp 2 orbital from each carbon atom. The π bond between the carbon atoms perpendicular to the molecular plane is formed by 2p–2p overlap. Each carbon atom forms covalent C–H bonds with two hydrogens by s–sp 2 overlap, all with 120° bond angles. The hydrogen–carbon bonds ...
Sigma bonds occur when the orbitals of two shared electrons overlap head-to-head, with the electron density most concentrated between nuclei. Pi bonds occur when two orbitals overlap when they are parallel. [9] For example, a bond between two s-orbital electrons is a sigma bond, because two spheres are always coaxial. In terms of bond order ...
The possible orbital symmetries are listed in the table below. For example, an orbital of B 1 symmetry (called a b 1 orbital with a small b since it is a one-electron function) is multiplied by -1 under the symmetry operations C 2 (rotation about the 2-fold rotation axis) and σ v '(yz) (reflection in the molecular
The Hückel method or Hückel molecular orbital theory, proposed by Erich Hückel in 1930, is a simple method for calculating molecular orbitals as linear combinations of atomic orbitals. The theory predicts the molecular orbitals for π-electrons in π-delocalized molecules, such as ethylene, benzene, butadiene, and pyridine.
The orbital wave functions are positive in the red regions and negative in the blue. The right column shows virtual MO's which are empty in the ground state, but may be occupied in excited states. In chemistry, a molecular orbital (/ ɒr b ə d l /) is a mathematical function describing the location and wave-like behavior of an electron in a ...