Search results
Results From The WOW.Com Content Network
The derivative of a function at a chosen input value describes the rate of change of the function near that input value. The process of finding a derivative is called differentiation . Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is ...
For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. [1] The process of finding a derivative is called differentiation .
In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...
Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus. The former concerns instantaneous rates of change , and the slopes of curves , while the latter concerns accumulation of quantities, and areas under or between curves.
[5] [6] The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h). [7] [8]: 237 [9] The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change. [9]
In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time. Because science and engineering often relate quantities to each other, the methods of related rates have broad ...
Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to
The first fundamental theorem says that the value of any function is the rate of change (the derivative) of its integral from a fixed starting point up to any chosen end point. Continuing the above example using a velocity as the function, you can integrate it from the starting time up to any given time to obtain a distance function whose ...