When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    A cube is a special case of rectangular cuboid in which the edges are equal in length. [1] Like other cuboids, every face of a cube has four vertices, each of which connects with three congruent lines. These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90 ...

  3. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  4. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1] Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells, meeting at right angles.

  5. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.

  6. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    Infinite number of uniform tilings in hyperbolic ... Cube: 4.4.4: 3 | 2 4: O h: C18: W003: U06: K11: ... The colored faces are included on the vertex figure images ...

  7. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    The number of vertices of a hypercube of dimension is (a usual, -dimensional cube has = vertices, for instance). [ 5 ] The number of the m {\displaystyle m} -dimensional hypercubes (just referred to as m {\displaystyle m} -cubes from here on) contained in the boundary of an n {\displaystyle n} -cube is

  8. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Vertex, edge and face of a cube. The Euler characteristic χ was classically defined for the surfaces of polyhedra, according to the formula = + where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron.

  9. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.