Search results
Results From The WOW.Com Content Network
Ionophores that disrupt the proton gradient by carrying protons across a membrane. This ionophore uncouples proton pumping from ATP synthesis because it carries protons across the inner mitochondrial membrane. [110] Rotenone: Pesticide: Complex I Prevents the transfer of electrons from complex I to ubiquinone by blocking the ubiquinone-binding ...
In cell respiration, the proton pump uses energy to transport protons from the matrix of the mitochondrion to the inter-membrane space. [1] It is an active pump that generates a proton concentration gradient across the inner mitochondrial membrane, because there are more protons outside the matrix than inside.
In mitochondria, energy released by the electron transport chain is used to move protons from the mitochondrial matrix (N side) to the intermembrane space (P side). Moving the protons out of the mitochondrion creates a lower concentration of positively charged protons inside it, resulting in excess negative charge on the inside of the membrane.
The efflux of protons from the mitochondrial matrix creates an electrochemical gradient (proton gradient). This gradient is used by the F O F 1 ATP synthase complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as Complex V of the electron transport chain. [10] The F O component of ATP synthase acts as an ion ...
Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel .
Complex III and IV are proton pumps, pumping H+ protons out of the mitochondrial matrix, and work in conjunction with complex I to create the proton gradient found at the inner membrane. Cytochrome c is and electron carrier protein that travels between complex III and IV, and triggers apoptosis if it leaves the cristae. Complex IV passes ...
The Bovine Mitochondrial F 1-ATPase Complexed with the inhibitor protein If1 is commonly cited in the relevant literature. Examples of its use may be found in many cellular fundamental metabolic activities such as acidosis and alkalosis and respiratory gas exchange.
The ATP synthase of mitochondria and chloroplasts is an anabolic enzyme that harnesses the energy of a transmembrane proton gradient as an energy source for adding an inorganic phosphate group to a molecule of adenosine diphosphate (ADP) to form a molecule of adenosine triphosphate (ATP).