Search results
Results From The WOW.Com Content Network
Cronbach's alpha (Cronbach's ), also known as tau-equivalent reliability or coefficient alpha (coefficient ), is a reliability coefficient and a measure of the internal consistency of tests and measures. [1] [2] [3] It was named after the American psychologist Lee Cronbach.
Internal consistency is usually measured with Cronbach's alpha, a statistic calculated from the pairwise correlations between items. Internal consistency ranges between negative infinity and one. Coefficient alpha will be negative whenever there is greater within-subject variability than between-subject variability. [1]
This method provides a partial solution to many of the problems inherent in the test-retest reliability method. For example, since the two forms of the test are different, carryover effect is less of a problem. Reactivity effects are also partially controlled; although taking the first test may change responses to the second test.
It is a special case of Cronbach's α, computed for dichotomous scores. [2] [3] It is often claimed that a high KR-20 coefficient (e.g., > 0.90) indicates a homogeneous test. However, like Cronbach's α, homogeneity (that is, unidimensionality) is actually an assumption, not a conclusion, of reliability coefficients.
A college student just solved a seemingly paradoxical math problem—and the answer came from an incredibly unlikely place. Skip to main content. 24/7 Help. For premium support please call: 800 ...
Krippendorff's alpha [16] [17] is a versatile statistic that assesses the agreement achieved among observers who categorize, evaluate, or measure a given set of objects in terms of the values of a variable. It generalizes several specialized agreement coefficients by accepting any number of observers, being applicable to nominal, ordinal ...
Cronbach's can be shown to provide a lower bound for reliability under rather mild assumptions. [citation needed] Thus, the reliability of test scores in a population is always higher than the value of Cronbach's in that population. Thus, this method is empirically feasible and, as a result, it is very popular among researchers.
For the reliability of a two-item test, the formula is more appropriate than Cronbach's alpha (used in this way, the Spearman-Brown formula is also called "standardized Cronbach's alpha", as it is the same as Cronbach's alpha computed using the average item intercorrelation and unit-item variance, rather than the average item covariance and ...