When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linnett double-quartet theory - Wikipedia

    en.wikipedia.org/wiki/Linnett_Double-Quartet_Theory

    The dot-and-cross diagram for molecular oxygen in the ground state. The oxygen nuclei are as indicated and the electrons are denoted by either dots or crosses, depending on their relative spins. The above three-dimensional LDQ structures are useful for visualising the molecular structures, but they can be laborious to construct.

  3. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    MO diagram of dihydrogen Bond breaking in MO diagram. The smallest molecule, hydrogen gas exists as dihydrogen (H-H) with a single covalent bond between two hydrogen atoms. As each hydrogen atom has a single 1s atomic orbital for its electron, the bond forms by overlap of these two atomic orbitals. In the figure the two atomic orbitals are ...

  4. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    The nitrogen atom has only 6 electrons assigned to it. One of the lone pairs on an oxygen atom must form a double bond, but either atom will work equally well. Therefore, there is a resonance structure. Tie up loose ends. Two Lewis structures must be drawn: Each structure has one of the two oxygen atoms double-bonded to the nitrogen atom.

  5. Iron compounds - Wikipedia

    en.wikipedia.org/wiki/Iron_compounds

    The iron compounds produced on the largest scale in industry are iron(II) sulfate (FeSO 4 ·7H 2 O) and iron(III) chloride (FeCl 3). The former is one of the most readily available sources of iron(II), but is less stable to aerial oxidation than Mohr's salt ((NH 4) 2 Fe(SO 4) 2 ·6H 2 O). Iron(II) compounds tend to be oxidized to iron(III ...

  6. Iron(III) oxide - Wikipedia

    en.wikipedia.org/wiki/Iron(III)_oxide

    Partial reduction with hydrogen at about 400 °C produces magnetite, a black magnetic material that contains both Fe(III) and Fe(II): [18] Fe 2 O 3 + H 2 → 2 Fe 3 O 4 + H 2 O. Iron(III) oxide is insoluble in water but dissolves readily in strong acid, e.g., hydrochloric and sulfuric acids.

  7. Bohr model of the chemical bond - Wikipedia

    en.wikipedia.org/.../Bohr_model_of_the_chemical_bond

    The Bohr model of the chemical bond took into account the Coulomb repulsion - the electrons in the ring are at the maximum distance from each other. [ 2 ] Thus, according to this model, the methane molecule is a regular tetrahedron , in which center the carbon nucleus locates, and in the corners - the nucleus of hydrogen.

  8. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    Certain atoms, such as oxygen, will almost always set their two (or more) covalent bonds in non-collinear directions due to their electron configuration. Water (H 2 O) is an example of a bent molecule, as well as its analogues. The bond angle between the two hydrogen atoms is approximately 104.45°. [1]

  9. Iron (II,III) oxide - Wikipedia

    en.wikipedia.org/wiki/Iron(II,III)_oxide

    Iron(II,III) oxide, or black iron oxide, is the chemical compound with formula Fe 3 O 4. It occurs in nature as the mineral magnetite . It is one of a number of iron oxides , the others being iron(II) oxide (FeO), which is rare, and iron(III) oxide (Fe 2 O 3 ) which also occurs naturally as the mineral hematite .