Search results
Results From The WOW.Com Content Network
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
The synodic period is the amount of time that it takes for an object to reappear at the same point in relation to two or more other objects. In common usage, these two objects are typically Earth and the Sun. The time between two successive oppositions or two successive conjunctions is also equal to the synodic period. For celestial bodies in ...
For natural satellites, which can attain a synchronous orbit only by tidally locking their parent body, it always goes in hand with synchronous rotation of the satellite. This is because the smaller body becomes tidally locked faster, and by the time a synchronous orbit is achieved, it has had a locked synchronous rotation for a long time already.
In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Stars and planets rotate in the first place because conservation of angular momentum turns random drifting of parts of the molecular cloud that they form from into rotating motion as they coalesce. Given this average rotation of the whole body, internal differential rotation is caused by convection in stars which is a movement of mass, due to ...