When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    A primality test is an algorithm for determining whether an input number is prime.Among other fields of mathematics, it is used for cryptography.Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not.

  3. Lazy initialization - Wikipedia

    en.wikipedia.org/wiki/Lazy_initialization

    Otherwise, we check V[T[k]], and verify that the first component of this pair is equal to k. If it is not, then T[k] is uninitialized (and just happened by accident to fall in the range {1, ..., m}). Otherwise, we know that T[k] is indeed one of the initialized cells, and the corresponding value is the second component of the pair.

  4. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Fermat's little theorem states that if p is prime and a is not divisible by p, then a p − 1 ≡ 1 ( mod p ) . {\displaystyle a^{p-1}\equiv 1{\pmod {p}}.} If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds.

  5. Lucas primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas_primality_test

    In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.

  6. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    This occurs for example when n is a probable prime to base a but not a strong probable prime to base a. [20]: 1402 If x is a nontrivial square root of 1 modulo n, since x 2 ≡ 1 (mod n), we know that n divides x 2 − 1 = (x − 1)(x + 1); since x ≢ ±1 (mod n), we know that n does not divide x − 1 nor x + 1.

  7. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  8. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    trial divisions, where () denotes the prime-counting function, the number of primes less than x. This does not take into account the overhead of primality testing to obtain the prime numbers as candidate factors. A useful table need not be large: P(3512) = 32749, the last prime that fits into a sixteen-bit signed integer and P(6542) = 65521 for ...

  9. Euler pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Euler_pseudoprime

    A slightly stronger test uses the Jacobi symbol to predict which of the two results will be found. The resultant Euler-Jacobi probable prime test verifies that / ().As with the basic Euler test, a and n are required to be comprime, but that test is included in the computation of the Jacobi symbol (a/n), whose value equals 0 if the values are not coprime.