Search results
Results From The WOW.Com Content Network
The Hill coefficient, or , may describe cooperativity (or possibly other biochemical properties, depending on the context in which the Hill equation is being used). When appropriate, [clarification needed] the value of the Hill coefficient describes the cooperativity of ligand binding in the following way:
The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him:
One manifestation of this is enzymes or receptors that have multiple binding sites where the affinity of the binding sites for a ligand is apparently increased, positive cooperativity, or decreased, negative cooperativity, upon the binding of a ligand to a binding site. For example, when an oxygen atom binds to one of hemoglobin's four binding ...
A multimeric protein's affinity for a ligand changes upon binding to a ligand, a process known as cooperativity. This phenomenon was first discovered by Christian Bohr's analysis of hemoglobin, whose binding affinity for molecular oxygen increases as oxygen binds its subunits. [1]
Further hemoglobin crystal structures at higher resolution (PDB 1MHB, 1DHB) soon showed the coupled change of both local and quaternary conformation between the oxy and deoxy states of hemoglobin, [5] which explains the cooperativity of oxygen binding in the blood and the allosteric effect of factors such as pH and DPG. For decades hemoglobin ...
This model explains sigmoidal binding properties (i.e. positive cooperativity) as change in concentration of ligand over a small range will lead to a large increase in the proportion of molecules in the R state, and thus will lead to a high association of the ligand to the protein. It cannot explain negative cooperativity.
Allosteric enzymes include mammalian tyrosyl tRNA-synthetase, which shows negative cooperativity, [37] and bacterial aspartate transcarbamoylase [38] and phosphofructokinase, [39] which show positive cooperativity. Cooperativity is surprisingly common and can help regulate the responses of enzymes to changes in the concentrations of their ...
where is the Hill coefficient which quantifies the steepness of the sigmoidal stimulus-response curve and it is therefore a sensitivity parameter. It is often used to assess the cooperativity of a system. A Hill coefficient greater than one is indicative of positive cooperativity and thus, the system exhibits ultrasensitivity. [34]