Search results
Results From The WOW.Com Content Network
14, 49, −21 and 0 are multiples of 7, whereas 3 and −6 are not. This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6.
Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on a telephone keypad. Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5.
Note that numbers that will be discarded by a step are still used while marking the multiples in that step, e.g., for the multiples of 3 it is 3 × 3 = 9, 3 × 5 = 15, 3 × 7 = 21, 3 × 9 = 27, ..., 3 × 15 = 45, ..., so care must be taken dealing with this.
Least common multiple = 2 × 2 × 2 × 2 × 3 × 3 × 5 = 720 Greatest common divisor = 2 × 2 × 3 = 12 Product = 2 × 2 × 2 × 2 × 3 × 2 × 2 × 3 × 3 × 5 = 8640. This also works for the greatest common divisor (gcd), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are ...
If it is divisible by 2 continue by adding the digits of the original number and checking if that sum is a multiple of 3. Any number which is both a multiple of 2 and of 3 is a multiple of 6. Example. 324 (The original number) Final digit 4 is even, so 324 is divisible by 2, and may be divisible by 6. 3 + 2 + 4 = 9 which is a multiple of 3.
When written in base 10, all multiples of 2 will end in 0, 2, 4, 6, or 8. [3] 2 is the smallest and the only even prime number, and the first Ramanujan prime. [4] It is also the first superior highly composite number, [5] and the first colossally abundant number. [6]
Polydivisible numbers represent a generalization of the following well-known [2] problem in recreational mathematics: Arrange the digits 1 to 9 in order so that the first two digits form a multiple of 2, the first three digits form a multiple of 3, the first four digits form a multiple of 4 etc. and finally the entire number is a multiple of 9.
A binary prefix is a unit prefix that indicates a multiple of a unit of measurement by an integer power of two.The most commonly used binary prefixes are kibi (symbol Ki, meaning 2 10 = 1024), mebi (Mi, 2 20 = 1 048 576), and gibi (Gi, 2 30 = 1 073 741 824).