Search results
Results From The WOW.Com Content Network
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
The most important inference derived from the steady state equation and the equation for fractional change over time is that the elimination rate constant (k e) or the sum of rate constants that apply in a model determine the time course for change in mass when a system is perturbed (either by changing the rate of inflow or production, or by ...
This equation can be used to predict the initial adsorption rate of any system; It can be used to predict the steady-state adsorption rate of a typical biosensing system when the binding site is just a very small fraction of the substrate surface and a near-surface concentration gradient is never formed; It can also be used to predict the ...
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
A physiologic interpretation of clearance (at steady-state) is that clearance is a ratio of the mass generation and blood (or plasma) concentration. Its definition follows from the differential equation that describes exponential decay and is used to model kidney function and hemodialysis machine function:
There are various competing calculation methods for the drug accumulation ratio, yielding somewhat different results. A commonly used formula defines R ac as the ratio of the area under the curve (AUC) during a single dosing interval under steady state conditions to the AUC during a dosing interval after one single dose: [1]
In pharmacokinetics, steady state refers to the situation where the overall intake of a drug is fairly in dynamic equilibrium with its elimination. In practice, it is generally considered that once regular dosing of a drug is started, steady state is reached after 3 to 5 times its half-life. In steady state and in linear pharmacokinetics, AUC ...
The rate equation for the rate of formation of product P may be obtained by using the steady-state approximation, in which the concentration of intermediate A* is assumed constant because its rates of production and consumption are (almost) equal. [8] This assumption simplifies the calculation of the rate equation.