When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

  3. Power law - Wikipedia

    en.wikipedia.org/wiki/Power_law

    In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one quantity varies as a power of another. The change is independent of the initial size of those quantities.

  4. Wind profile power law - Wikipedia

    en.wikipedia.org/wiki/Wind_profile_power_law

    The wind profile power law relationship is = where is the wind speed (in metres per second) at height (in metres), and is the known wind speed at a reference height .The exponent is an empirically derived coefficient that varies dependent upon the stability of the atmosphere.

  5. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    The predictions of the first three models (hard-sphere, power-law, and Sutherland) can be simply expressed in terms of elementary functions. The Lennard–Jones model predicts a more complicated T {\displaystyle T} -dependence, but is more accurate than the other three models and is widely used in engineering practice.

  6. Hurst exponent - Wikipedia

    en.wikipedia.org/wiki/Hurst_exponent

    A value H in the range 0.5–1 indicates a time series with long-term positive autocorrelation, meaning that the decay in autocorrelation is slower than exponential, following a power law; for the series it means that a high value tends to be followed by another high value and that future excursions to more high values do occur. A value in the ...

  7. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...

  8. Power-law index profile - Wikipedia

    en.wikipedia.org/wiki/Power-law_index_profile

    For optical fibers, a power-law index profile is an index of refraction profile characterized by = {()where =, and () is the nominal refractive index as a function of distance from the fiber axis, is the nominal refractive index on axis, is the refractive index of the cladding, which is taken to be homogeneous (() = ), is the core radius, and is a parameter that defines the shape of the profile.

  9. Pareto distribution - Wikipedia

    en.wikipedia.org/wiki/Pareto_distribution

    The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, [2] is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend ...