Search results
Results From The WOW.Com Content Network
[9] [10] Changing the form can have a large impact on other chemical properties. For example, FAD, the fully oxidized form is subject to nucleophilic attack, the fully reduced form, FADH 2 has high polarizability, while the half reduced form is unstable in aqueous solution. [11] FAD is an aromatic ring system, whereas FADH 2 is not. [12]
Examples include NADPH, NADH, and FADH. The main role of these is to transport hydrogen atom to electron transport chain which will change ADP to ATP by adding one phosphate during metabolic processes (e.g. photosynthesis and respiration).
FAD reductase (NADH) (EC 1.5.1.37, NADH-FAD reductase, NADH-dependent FAD reductase) is an enzyme with systematic name FADH 2:NAD + oxidoreductase. [1] This enzyme catalyses the following chemical reaction. FADH 2 + NAD + FAD + NADH + H + The enzyme from Burkholderia phenoliruptrix has a preference for FAD.
The net gain from one cycle is 3 NADH and 1 FADH 2 as hydrogen (proton plus electron) carrying compounds and 1 high-energy GTP, which may subsequently be used to produce ATP. Thus, the total yield from 1 glucose molecule (2 pyruvate molecules) is 6 NADH, 2 FADH 2, and 2 ATP. [9] [10] [7]: 90–91
The oxidized and reduced forms are in fast equilibrium with the semiquinone form, shifted against the formation of the radical: [2] Fl ox + Fl red H 2 ⇌ FlH • where Fl ox is the oxidized flavin, Fl red H 2 the reduced flavin (upon addition of two hydrogen atoms) and FlH • the semiquinone form (addition of one hydrogen atom).
The energy from the acetyl group, in the form of electrons, is used to reduce NAD+ and FAD to NADH and FADH 2, respectively. NADH and FADH 2 contain the stored energy harnessed from the initial glucose molecule and is used in the electron transport chain where the bulk of the ATP is produced. [1]
The main products of the beta oxidation pathway are acetyl-CoA (which is used in the citric acid cycle to produce energy), NADH and FADH. [16] The process of beta oxidation requires the following enzymes: acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase. [15]
The cofactors NAD + and FAD are sometimes reduced during this process to form NADH and FADH 2, which drive the creation of ATP in other processes. [15] A molecule of NADH can produce 1.5–2.5 molecules of ATP, whereas a molecule of FADH 2 yields 1.5 molecules of ATP. [16]