Search results
Results From The WOW.Com Content Network
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
For example, to find the Hall divisors of 60, its prime power factorization is 2 2 × 3 × 5, so one takes any product of 3, 2 2 = 4, and 5. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60. A Hall subgroup of G is a subgroup whose order is a Hall divisor of the order of G. In other words, it is a subgroup whose order is coprime ...
For every divisor d of n, G has at most one subgroup of order d. If either (and thus both) are true, it follows that there exists exactly one subgroup of order d, for any divisor of n. This statement is known by various names such as characterization by subgroups. [5] [6] [7] (See also cyclic group for some characterization.)
Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient. Denoting by σ(n) the sum of divisors, the value 2n – σ(n) is called the number's deficiency.
e = eA implies that the action of W e squares to the identity; for this reason, the resulting operator is called an Atkin–Lehner involution. If e and f are both Hall divisors of N, then W e and W f commute modulo Γ 0 (N). Moreover, if we define g to be the Hall divisor g = ef/(e,f) 2, their product is equal to W g modulo Γ 0 (N).
If R is a commutative ring, and a and b are in R, then an element d of R is called a common divisor of a and b if it divides both a and b (that is, if there are elements x and y in R such that d·x = a and d·y = b). If d is a common divisor of a and b, and every common divisor of a and b divides d, then d is called a greatest common divisor of ...
This follows since 2 d*(n) divides the sum of the unitary divisors of an odd number n, where d*(n) is the number of distinct prime factors of n. One gets this because the sum of all the unitary divisors is a multiplicative function and one has that the sum of the unitary divisors of a prime power p a is p a + 1 which is even for all odd primes ...
A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a m for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful) has multiplicity above 1 for all prime factors.