When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  3. Hall subgroup - Wikipedia

    en.wikipedia.org/wiki/Hall_subgroup

    For example, to find the Hall divisors of 60, its prime power factorization is 2 2 × 3 × 5, so one takes any product of 3, 2 2 = 4, and 5. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60. A Hall subgroup of G is a subgroup whose order is a Hall divisor of the order of G. In other words, it is a subgroup whose order is coprime ...

  4. Subgroups of cyclic groups - Wikipedia

    en.wikipedia.org/wiki/Subgroups_of_cyclic_groups

    For every divisor d of n, G has at most one subgroup of order d. If either (and thus both) are true, it follows that there exists exactly one subgroup of order d, for any divisor of n. This statement is known by various names such as characterization by subgroups. [5] [6] [7] (See also cyclic group for some characterization.)

  5. Deficient number - Wikipedia

    en.wikipedia.org/wiki/Deficient_number

    Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient. Denoting by σ(n) the sum of divisors, the value 2n – σ(n) is called the number's deficiency.

  6. Atkin–Lehner theory - Wikipedia

    en.wikipedia.org/wiki/Atkin–Lehner_theory

    e = eA implies that the action of W e squares to the identity; for this reason, the resulting operator is called an Atkin–Lehner involution. If e and f are both Hall divisors of N, then W e and W f commute modulo Γ 0 (N). Moreover, if we define g to be the Hall divisor g = ef/(e,f) 2, their product is equal to W g modulo Γ 0 (N).

  7. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    If R is a commutative ring, and a and b are in R, then an element d of R is called a common divisor of a and b if it divides both a and b (that is, if there are elements x and y in R such that d·x = a and d·y = b). If d is a common divisor of a and b, and every common divisor of a and b divides d, then d is called a greatest common divisor of ...

  8. Unitary perfect number - Wikipedia

    en.wikipedia.org/wiki/Unitary_perfect_number

    This follows since 2 d*(n) divides the sum of the unitary divisors of an odd number n, where d*(n) is the number of distinct prime factors of n. One gets this because the sum of all the unitary divisors is a multiplicative function and one has that the sum of the unitary divisors of a prime power p a is p a + 1 which is even for all odd primes ...

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a m for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful) has multiplicity above 1 for all prime factors.