When.com Web Search

  1. Ads

    related to: multiples and factors grade 7

Search results

  1. Results From The WOW.Com Content Network
  2. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    14, 49, −21 and 0 are multiples of 7, whereas 3 and −6 are not. This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6.

  3. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).

  4. Investigations in Numbers, Data, and Space - Wikipedia

    en.wikipedia.org/wiki/Investigations_in_Numbers...

    In the original edition, there was no multiplication table presented. Instead, students were instructed to color-code multiples of numbers on a 100s chart and evaluate these charts to find common multiples and patterns. There is no formal presentation of decimal addition. Students are instructed to begin by using colored pencils on 10,000 grid ...

  5. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Here, 3 (the multiplier) and 4 (the multiplicand) are the factors, and 12 is the product. One of the main properties of multiplication is the commutative property, which states in this case that adding 3 copies of 4 gives the same result as adding 4 copies of 3:

  6. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    For n ≥ 2, a(n) is the prime that is finally reached when you start with n, concatenate its prime factors (A037276) and repeat until a prime is reached; a(n) = −1 if no prime is ever reached. A037274

  7. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. Euler diagram of numbers under 100: