Search results
Results From The WOW.Com Content Network
Wittig reagents are usually prepared from a phosphonium salt, which is in turn prepared by the quaternization of triphenylphosphine with an alkyl halide. Wittig reagents are usually derived from a primary alkyl halide. Quaternization of triphenylphosphine with secondary halides is typically inefficient.
The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide called a Wittig reagent. Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes. [1] [2] [3] Most often, the Wittig reaction is used to introduce a methylene group using ...
A 1,2-Wittig rearrangement is a categorization of chemical reactions in organic chemistry, and consists of a 1,2-rearrangement of an ether with an alkyllithium compound. [1] The reaction is named for Nobel Prize winning chemist Georg Wittig. [2] [3] The intermediate is an alkoxy lithium salt, and the final product an alcohol.
The [2,3]-Wittig rearrangement is the transformation of an allylic ether into a homoallylic alcohol via a concerted, pericyclic process.Because the reaction is concerted, it exhibits a high degree of stereocontrol, and can be employed early in a synthetic route to establish stereochemistry.
Amine alkylation (amino-dehalogenation) is a type of organic reaction between an alkyl halide and ammonia or an amine. [1] The reaction is called nucleophilic aliphatic substitution (of the halide), and the reaction product is a higher substituted amine. The method is widely used in the laboratory, but less so industrially, where alcohols are ...
An example in scheme 2 is the reaction of tert-butylbromide with potassium ethoxide in ethanol. E1 eliminations happen with highly substituted alkyl halides for two main reasons. Highly substituted alkyl halides are bulky, limiting the room for the E2 one-step mechanism; therefore, the two-step E1 mechanism is favored.
Another proposed mechanism involves single electron transfer with the generation of radicals. In reactions of secondary and tertiary alkyllithium and alkyl halides, radical species were detected by EPR spectroscopy. [9] [6] The mechanistic studies of lithium–halogen exchange are complicated by the formation of aggregates of organolithium species.
The Michaelis–Arbuzov reaction is the chemical reaction of a trivalent phosphorus ester with an alkyl halide to form a pentavalent phosphorus species and another alkyl halide. Commonly, the phosphorus substrate is a phosphite ester (P(OR) 3) and the alkylating agent is an alkyl iodide. [11] The mechanism of the Michaelis–Arbuzov reaction