Ad
related to: define lattice and basis point of two sets
Search results
Results From The WOW.Com Content Network
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
A crystal is made up of one or more atoms, called the basis or motif, at each lattice point. The basis may consist of atoms, molecules, or polymer strings of solid matter, and the lattice provides the locations of the basis. Two Bravais lattices are often considered equivalent if they have isomorphic symmetry groups. In this sense, there are 5 ...
In this case, the following equivalent definition can be given: a subset I of a lattice (,) is an ideal if and only if it is a lower set that is closed under finite joins ; that is, it is nonempty and for all x, y in I, the element of P is also in I. [3]
In theoretical and computational chemistry, a basis set is a set of functions (called basis functions) that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.
The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [1] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices. In nature, carbon atoms of the two-dimensional material graphene are arranged in a honeycomb ...
A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms ...
There are two different natural notions of duality for a geometric lattice : the dual matroid, which has as its basis sets the complements of the bases of the matroid corresponding to , and the dual lattice, the lattice that has the same elements as in the reverse order. They are not the same, and indeed the dual lattice is generally not itself ...