Search results
Results From The WOW.Com Content Network
Siliceous ooze is a type of biogenic pelagic sediment located on the deep ocean floor. Siliceous oozes are the least common of the deep sea sediments, and make up approximately 15% of the ocean floor. [1] Oozes are defined as sediments which contain at least 30% skeletal remains of pelagic microorganisms. [2]
The two primary types of ooze are siliceous, which is composed primarily of silica (SiO 2), and calcareous or carbonate, which is mostly calcium carbonate (CaCO 3). [1] In an area in which biogenous is the dominant sediment type, the composition of microorganisms in that location determines to which category it is classified.
Skeleton fragments from siliceous organisms are subject to recrystallization and cementation. [37] Chert is the main fate of buried siliceous ooze and permanently removes silica from the oceanic silica cycle. The siliceous ooze is eventually subducted under the crust and metamorphosed in the upper mantle. [39]
Silicate, or silicic acid (H 4 SiO 4), is an important nutrient in the ocean. Unlike the other major nutrients such as phosphate, nitrate, or ammonium, which are needed by almost all marine plankton, silicate is an essential chemical requirement for very specific biota, including diatoms, radiolaria, silicoflagellates, and siliceous sponges.
The skeletal remains of some types of radiolarians make up a large part of the cover of the ocean floor as siliceous ooze. Due to their rapid change as species and intricate skeletons, radiolarians represent an important diagnostic fossil found from the Cambrian onwards.
Siliceous ooze is a type of biogenic pelagic sediment located on the deep ocean floor. Siliceous oozes are the least common of the deep sea sediments, and make up approximately 15% of the ocean floor. [40] Oozes are defined as sediments which contain at least 30% skeletal remains of pelagic microorganisms. [41]
The compaction factor varies generally between 3.2 and 5, which means that 1 meter of consolidated sediment is equivalent to 3.2 to 5 meters of ooze. The alpine radiolarites of the Upper Jurassic for instance show sedimentation rates of 7 to 15.5 meters/million years (or 0.007 to 0.0155 millimeters/year), which after compaction is equivalent to ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate