When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  3. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  4. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f ( t ) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral

  5. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable. The Laplace transform of a function f ( t ) , defined for all real numbers t ≥ 0 , is the function F ( s ) , which is a unilateral transform defined by

  6. List of transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_transforms

    Two-sided Laplace transform; Inverse two-sided Laplace transform; Laplace–Carson transform; Laplace–Stieltjes transform; Legendre transform; Linear canonical transform; Mellin transform. Inverse Mellin transform; Poisson–Mellin–Newton cycle; N-transform; Radon transform; Stieltjes transformation; Sumudu transform; Wavelet transform ...

  7. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    One of the most well-known of these, the Laplace expansion for the three-variable Laplace equation, is given in terms of the generating function for Legendre polynomials, | ′ | = = < > + (⁡), which has been written in terms of spherical coordinates (,,). The less than (greater than) notation means, take the primed or unprimed spherical ...

  8. Mellin inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Mellin_inversion_theorem

    The boundedness condition on () can be strengthened if is continuous. If () is analytic in the strip < <, and if | | < | |, where K is a positive constant, then () as defined by the inversion integral exists and is continuous; moreover the Mellin transform of is for at least < <.

  9. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform: