Search results
Results From The WOW.Com Content Network
IEEE 802.11 RTS/CTS (request to send/clear to send) is the optional mechanism used by the 802.11 wireless networking protocol to reduce frame collisions introduced by the hidden node problem. Originally the protocol fixed the exposed node problem as well, but later RTS/CTS does not, but includes ACKs.
Current versions of this UART by Exar claim to be able to handle up to 1.5 Mbit/s. This UART introduces the Auto-RTS and Auto-CTS features in which the RTS# signal is controlled by the UART to signal the external device to stop transmitting when the UART's buffer is full to or beyond a user-set trigger point and to stop transmitting to the ...
Furthermore, it is the foundation of many other MAC protocols used in wireless sensor networks (WSN). [2] The IEEE 802.11 RTS/CTS mechanism is adopted from this protocol. [3] [4] It uses RTS-CTS-DS-DATA-ACK frame sequence for transferring data, sometimes preceded by an RTS-RRTS frame sequence, in view to provide solution to the hidden node ...
Devices utilizing 802.11 based standards can enjoy the benefits of collision avoidance (RTS / CTS handshake, also Point coordination function), although they do not do so by default. By default they use a Carrier sensing mechanism called exponential backoff (or Distributed coordination function ), that relies upon a station attempting to ...
RTS/CTS (request to send/ clear to send) may refer to: Request to send and clear to send, flow control signals RS-232 RTS/CTS, today's [as of?] usual RS-232 hardware ...
A universal synchronous and asynchronous receiver-transmitter (USART, programmable communications interface or PCI) [1] is a type of a serial interface device that can be programmed to communicate asynchronously or synchronously. See universal asynchronous receiver-transmitter (UART) for a discussion of the asynchronous capabilities of these ...
[1] IEEE 802.11 RTS/CTS mechanism helps to solve this problem only if the nodes are synchronized and packet sizes and data rates are the same for both the transmitting nodes. When a node hears an RTS from a neighboring node, but not the corresponding CTS, that node can deduce that it is an exposed node and is permitted to transmit to other ...
RTS/CTS is not a complete solution and may decrease throughput even further, but adaptive acknowledgements from the base station can help too. The comparison with hidden stations shows that RTS/CTS packages in each traffic class are profitable (even with short audio frames, which cause a high overhead on RTS/CTS frames).