Search results
Results From The WOW.Com Content Network
Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner.
Hencky (1924) offered a physical interpretation of von Mises criterion suggesting that yielding begins when the elastic energy of distortion reaches a critical value. [6] For this reason, the von Mises criterion is also known as the maximum distortion strain energy criterion.
deflection of high-energy photons in the Coulomb field of nuclei Deep inelastic scattering: a lepton is deflected by a virtual photon emitted by a quark from the hadron Chiral anomaly: Anomaly-induced neutral pion decay . Flavor-changing neutral current (FCNC)
In physics, an elastic collision is an encounter between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net loss of kinetic energy into other forms such as heat, noise, or potential energy.
The physical reasons for elastic behavior can be quite different for different materials. In metals, the atomic lattice changes size and shape when forces are applied (energy is added to the system). When forces are removed, the lattice goes back to the original lower energy state.
In classical physics, a spring can be seen as a device that stores potential energy, specifically elastic potential energy, by straining the bonds between the atoms of an elastic material. Hooke's law of elasticity states that the extension of an elastic rod (its distended length minus its relaxed length) is linearly proportional to its tension ...
Elastic potential energy is the potential energy of an elastic object (for example a bow or a catapult) that is deformed under tension or compression (or stressed in formal terminology). It arises as a consequence of a force that tries to restore the object to its original shape, which is most often the electromagnetic force between the atoms ...
Normal metals, ceramics and most crystals show linear elasticity and a smaller elastic range. Linear elastic deformation is governed by Hooke's law, which states: = where σ is the applied stress; E is a material constant called Young's modulus or elastic modulus; ε is the resulting strain.