Search results
Results From The WOW.Com Content Network
The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems.
Explicit methods calculate the state of a system at a later time from the state of the system at the current time, while implicit methods find a solution by solving an equation involving both the current state of the system and the later one.
This is a list of mathematics-based methods. Adams' method (differential equations) Akra–Bazzi method (asymptotic analysis) Bisection method (root finding) Brent's method (root finding) Condorcet method (voting systems) Coombs' method (voting systems) Copeland's method (voting systems) Crank–Nicolson method (numerical analysis) D'Hondt ...
The iteration capability in Excel can be used to find solutions to the Colebrook equation to an accuracy of 15 significant figures. [3] [4] Some of the "successive approximation" schemes used in dynamic programming to solve Bellman's functional equation are based on fixed-point iterations in the space of the return function. [5] [6]
Linear and non-linear equations. In the case of a single equation, the "solver" is more appropriately called a root-finding algorithm. Systems of linear equations. Nonlinear systems. Systems of polynomial equations, which are a special case of non linear systems, better solved by specific solvers. Linear and non-linear optimisation problems
An extension of this idea is to choose dynamically between different methods of different orders (this is called a variable order method). Methods based on Richardson extrapolation, [14] such as the Bulirsch–Stoer algorithm, [15] [16] are often used to construct various methods of different orders. Other desirable features include:
He proposed solving a 4-by-4 system of equations by repeatedly solving the component in which the residual was the largest [citation needed]. The theory of stationary iterative methods was solidly established with the work of D.M. Young starting in the 1950s.
Lis is a scalable parallel library for solving systems of linear equations and eigenvalue problems using iterative methods. Intel MKL (Math Kernel Library) contains optimized math routines for science, engineering, and financial applications, and is written in C/C++ and Fortran. Core math functions include BLAS, LAPACK, ScaLAPACK, sparse ...