Search results
Results From The WOW.Com Content Network
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
In linear algebra and numerical analysis, a preconditioner of a matrix is a matrix such that has a smaller condition number than . It is also common to call T = P − 1 {\displaystyle T=P^{-1}} the preconditioner, rather than P {\displaystyle P} , since P {\displaystyle P} itself is rarely explicitly available.
A consideration of the condition number of the Wilson matrix has spawned several interesting research problems relating to condition numbers of matrices in certain special classes of matrices having some or all the special features of the Wilson matrix. In particular, the following special classes of matrices have been studied: [1]
Using the pseudoinverse and a matrix norm, one can define a condition number for any matrix: = ‖ ‖ ‖ + ‖. A large condition number implies that the problem of finding least-squares solutions to the corresponding system of linear equations is ill-conditioned in the sense that small errors in the entries of A {\displaystyle A} can ...
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1: ρ ( D − 1 ( L + U ) ) < 1. {\displaystyle \rho (D^{-1}(L+U))<1.} A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant .
The condition number is computed by finding the maximum singular value divided by the minimum singular value of the design matrix. [10] In the context of collinear variables, the variance inflation factor is the condition number for a particular coefficient.
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.