Search results
Results From The WOW.Com Content Network
Inhalation begins with the contraction of the muscles attached to the rib cage; this causes an expansion in the chest cavity. Then takes place the onset of contraction of the thoracic diaphragm , which results in expansion of the intrapleural space and an increase in negative pressure according to Boyle's law .
The pattern of motor stimuli during breathing can be divided into an inhalation stage and an exhalation stage. Inhalation shows a sudden, ramped increase in motor discharge to the respiratory muscles (and the pharyngeal constrictor muscles). [5] Before the end of inhalation, there is a decline in, and end of motor discharge.
Real-time magnetic resonance imaging of the human thorax during breathing X-ray video of a female American alligator while breathing. Breathing (spiration [1] or ventilation) is the rhythmical process of moving air into and out of the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen.
The normal relaxed state of the lung and chest is partially empty. Further exhalation requires muscular work. Inhalation is an active process requiring work. [4] Some of this work is to overcome frictional resistance to flow, and part is used to deform elastic tissues, and is stored as potential energy, which is recovered during the passive process of exhalation, Tidal breathing is breathing ...
This causes them to have a greater surface tension-lowering effect when the alveoli are small than when they are large (as at the end of inhalation, when the surfactant molecules are more widely spaced). The tendency for the alveoli to collapse is therefore almost the same at the end of exhalation as at the end of inhalation.
The process of breathing does not fill the alveoli with atmospheric air during each inhalation (about 350 ml per breath), but the inhaled air is carefully diluted and thoroughly mixed with a large volume of gas (about 2.5 liters in adult humans) known as the functional residual capacity which remains in the lungs after each exhalation, and ...
The two foremost reasons for use of mixed breathing gases are the reduction of nitrogen partial pressure by dilution with oxygen, to make nitrox mixtures, to reduce nitrogen uptake during pressure exposure and accelerate nitrogen elimination during decompression, and the substitution of helium (and occasionally other gases) for the nitrogen to ...
The other clearance mechanism is provided by the cough reflex. [2] Mucociliary clearance has a major role in pulmonary hygiene . MCC effectiveness relies on the correct properties of the airway surface liquid produced, both of the periciliary sol layer and the overlying mucus gel layer , and of the number and quality of the cilia present in the ...